A support vector regression-based approach
towards decentralized fault diagnosis in wireless
structural health monitoring systems

M. STEINER, D. LEGATIUK and K. SMARSLY

ABSTRACT

The reliability of sensors in structural health monitoring (SHM) systems is affected
by sensor faults that compromise the quality of monitoring, causing erroneous judgment
of structural conditions. To ensure reliable operation of SHM systems, techniques for
diagnosing sensor faults have been proposed. In wireless SHM systems, embedding
techniques for fault diagnosis (FD) into sensor nodes is of increasing importance as sen-
sor nodes process data on board and communicate analysis results instead of large sets of
raw data. As a consequence of on-board processing, raw data is frequently unavailable
and sensor faults remain undetected. In this paper, a decentralized fault diagnosis ap-
proach based on support vector regression (FD-SVR) is proposed. Due to the high accu-
racy of the support vector regression (SVR), which can be achieved even with relatively
small data sets, the FD-SVR approach enables wireless sensor nodes autonomously self-
diagnose sensor faults, enhancing the reliability of wireless SHM systems without a need
for large data sets to be used for fault diagnosis. The ability of the embedded FD-SVR
approach to detect and isolate sensor faults, increasing the reliability of sensors in wire-
less SHM systems, is validated in laboratory experiments.

INTRODUCTION

The threats posed to public safety by aging civil infrastructure have paved the way
for non-invasive methods to perform structural condition assessment in civil engineer-
ing [1]. Advancing cost-efficient condition assessment and timely detection of structural
damage, structural health monitoring (SHM) aims at collecting and processing structural
response data on a continuous basis. By analyzing structural response data in real time,
alerts may be issued in the presence of abnormal structural conditions [2]. Furthermore,
using wireless SHM systems facilitates easier installation and higher scalability as well
as decentralized data processing through the processing capabilities of wireless sensor
nodes [3]. However, the reliability of sensors is affected by sensor faults that compro-
mise the quality of monitoring, causing erroneous judgment of structural conditions.
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Sensor faults are usually visible in the data collected by the sensors [4]. The five most
common sensor fault types are bias, drift, gain, precision degradation, and complete
failure [5].

To ensure reliable operation of wireless SHM systems, in the field of fault diag-
nosis (FD), strategies for detecting, isolating, identifying, and accommodating sensor
faults are investigated since many years [6—8]. FD approaches in SHM are usually based
on comparisons between virtual sensor outputs calculated from non-faulty, correlated
senors and actual sensor outputs [9]. To reduce cost of material, installation, and main-
tenance, the information inherent to SHM systems is exploited to produce virtual sen-
sor outputs (‘“‘analytical redundancy”) instead of installing multiple redundant sensors
(“physical redundancy”) [10]. The analytically redundant information in structural re-
sponse data is computed either via physics-based models or using data-driven models.
While physics-based models require further knowledge related to underlying physical
behavior, data-driven models build upon input-output data without a priori knowledge.
For example, artificial neural networks have been used in several studies, representing
data-driven models for fault diagnosis [11-13].

Most FD approaches, due to the limited resources of wireless sensor nodes, have
in common to require centralized data storage and centralized data processing, which
contradicts the decentralized nature of wireless SHM systems. Therefore, accurate and
computationally efficient decentralized approaches to perform fault diagnosis on-board
of the sensor nodes are essential. Most data-driven analysis methods employed for FD,
such as artificial neural networks, are classified as “big data methods”, requiring large
data sets to ensure satisfying quality. In this paper, a fault diagnosis approach based
on support vector regression (FD-SVR) is presented, which generally performs better
compared to the big data methods when only small data sets available. By implement-
ing the FD-SVR approach presented in this study, wireless sensor nodes are enabled to
autonomously self-diagnose sensor faults in a decentralized manner, enhancing the re-
liability of SHM systems. The reliability is validated through laboratory tests using a
prototype wireless SHM system installed on a laboratory bridge structure. Within the
critical steps of fault diagnosis (fault detection, fault isolation, fault identification, and
fault accommodation), this study focuses on fault detection and fault isolation.

DECENTRALIZED FAULT DIAGNOSIS BASED ON SUPPORT VECTOR RE-
GRESSION

Concept of support vector regression

Numerical models or physical experiments can generally be characterized as an un-
known (i.e. black-box) mapping f from input model/experiment parameters to the model
output. The support vector regression (SVR) is used to construct an approximation func-
tion f of the black-box mapping f [14]. In the field of FD, the approximation function is
used for creating virtual data for comparison with measured data. The function f is con-
structed from training data consisting of input points X, ..., X,, € R* and the responses
y1 = f(x1),...,yn = f(x,). In this paper, the so-called e-SVR is applied [15]. The



approximation function is formulated as
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where [wy,...,w,]T := w and p are unknown model parameters, whose values are

determined through optimization. The function v is a Gaussian kernel function, i.e.
(x4, %;) = exp(—|x; — x,|*/0?), with o2 denoting the variance, defining the correla-
tion between a new point x and the training data. The SVR training process results in
the following constrained optimization problem:
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where ||-|| is the Euclidean norm, ¢ is a tolerance parameter, ;" and &; are slack variables
allowing error larger than ¢, the parameter C' controls the trade-off between the flatness
of f and the influence of slack variables on the tolerance [16]. The solution of the
convex optimization problem (2) can be constructed directly after reformulating it into a
dual quadratic optimization problem by the Lagrangian function and the Karush-Kuhn-
Tucker conditions [17]. In this paper, the coefficient of determination R? is used as
an approximation quality measure [18]. The R? coefficient describes the part of the
variation of f that can be mapped by f and is given by:

. 2
L Y (w-ie)
RP=1- "0 L 3)
> i1 (Ui —7)
where 7 denotes the mean value of 4, ..., y,. A high approximation quality is indicated
by an R? value close to 1.

A support vector regression approach for decentralized fault diagnosis (FD-SVR
approach)

For the FD-SVR approach, it is assumed that the structural response data, such as
acceleration, at a sensor node j can be described by a function of the response data
recorded from (k — 1) neighbored sensor nodes, as given below:
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with [0, 7'] denoting the observed time interval. Based on non-faulty sensor data, which
is used as training data for the SVR, the behavior of f; is approximated with fj. Con-
tinuity of f; is required for the convergence of fj to f;, leading to the condition that
response data from different sensor nodes must be correlated. The FD-SVR approach
consists of the following phases:

(1) Training phase, where the data is first pre-processed and then used to construct the
approximation functions fj for j = 1,..., k. The results of the training phase are
validated through the coefficient of determination by using additional validation
data. Based on the R? values, the bounds for the fault detection are defined.



(i1) Initialization phase, where the approximation functions and the bounds are embed-
ded into the corresponding sensor nodes, enabling decentralized fault diagnosis.

(iii) Observation phase, where each sensor node, in a decentralized manner, measures
continuously structural response data and compares the data with virtual outputs
approximating the measured data. In the event of discrepancies between the virtual
and the actual sensor outputs higher than the bounds, sensor alerts are issued.

(iv) Decision phase, where the sensor alerts are interpreted by distinguishing between
sensor faults and structural changes. Because of the decentralized nature of the
FD-SVR approach, the fault isolation (i.e. localization) is automatically done.

Implementation of the FD-SVR approach into wireless SHM systems

The FD-SVR approach described in the previous subsections is designed to be im-
plemented in wireless SHM systems for diagnosing sensor faults. Each sensor node
measures structural response data from sensors to analyze data on board and to transmit
or receive data within the SHM system. Based on the specific capabilities of the wireless
sensor nodes, pre-processing of the data and data analyses are performed using embed-
ded algorithms. The results of the analyses are transmitted via a base station to a server
or to cloud-based devices for data storage and further data analysis.

Since the main monitoring tasks of wireless SHM systems are performed on the sen-
sor nodes, decentralized computing on several hardware components is required. The
FD-SVR applications, materializing the decentralized FD-SVR approach, to be imple-
mented in wireless SHM systems are categorized into two groups, (i) the implementation
running centralized on the server (“host application”) and (ii) the implementation em-
bedded in the sensor nodes (“‘on-board application”). The on-board application includes
programs managing the sensor nodes operation (e.g. calibration, synchronization, and
data collection) as well as programs for calculating virtual data and comparing actual
and virtual data during the observation phase described earlier. The host application is
assigned with calculating the approximation function fj for each sensor node upon re-
ceiving sets of structural response data (training data) from all sensor nodes, as part of
the training phase. The approximation functions are implemented into the correspond-
ing sensor nodes during the initialization phase. The distinction between sensor faults
and structural changes is performed on-board or on the server in the decision phase. A
flowchart of the FD-SVR algorithm is shown in Figure 1.

VALIDATION OF THE FD-SVR APPROACH

The FD-SVR approach is implemented into a prototype wireless SHM system that is
installed on a laboratory bridge structure to validate the reliable, i.e. non-faulty, operation
of the sensors in the wireless SHM system.
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Figure 1. Flowchart of the FD-SVR algorithm.

Decision

Experimental setup

The wireless SHM system is installed on a laboratory test structure, shown in Figure 2,
which is a single-span bridge of 1,600 mm length. The main bridge girders are made of
aluminum plates of 2 x 20 mm cross sections, resting on two blocks and supported by
a superstructure made of aluminum plates of L10 x 10 x 1 mm. Along the length of
the bridge, beams of 2 x 20 mm, perpendicular to the main girders, are distributed ev-
ery 25 mm. The wireless SHM system consists of sensor nodes, type Raspberry Pi 3
Model B+. Each Raspberry Pi features a quad core 1.4 GHz Broadcom BCM2837B0
64-bit CPU with 1 GBRAM, 2.4 GHz, and 5 GHz wireless LAN compliant to IEEE
802.11.b/g/n/ac. To measure acceleration, an 3-axis accelerometer, type ADXL345, is
connected to each Raspberry Pi, measuring at a resolution of 13 bits and up to 16 g.

The placement of the sensors is determined according to the first eigenmode of the



Sensor nodes SN1...SN4

Figure 2. Sensor placement on the test structure.

simply-supported bridge structure. The first eigenmode corresponds to a double si-
nusoidal wave for a simply-supported bridge, with maximum amplitude at about one-
quarter and three-quarters of the bridge length. Consequently, three sensors are located
in one half of the bridge for capturing the sinusoidal shape (S1, S2, and S3), and the
fourth sensor (S4) is located in the other half of the bridge for determining the direction
of the next sinusoidal shape. The validation tests are performed by manually exciting
different points along the bridge length, allowing free vibration of the bridge. Since the
test structure is a one-span bridge, it is expected that the structural response in free vi-
bration is predominantly governed by the fundamental mode of vibration, in which all
sensor outputs are in phase with each other. As opposed for engineering practice where
a combined contribution of several modes may compromise the accuracy of the FD-SVR
approach, a correlation of the sensor outputs is expected at the laboratory structure.

Validation tests

In the following, the focus lies on sensor node SN2, because SN2 shows the highest
correlation with the other senor nodes. To determine the optimum number of training
points in the training phase, the number of training points is incrementally increased un-
til a stable behavior of R? is reached. Increasing the number of training data normally
improves the accuracy of the approximation, but large data sets may induce overfitting
problems and increase the computational costs, influencing the effectiveness of the ob-
servation phase. Discussions on the size of training data and adaptive sampling strate-
gies can be found, e.g., in [14, 19]. The decentralized implementation of the FD-SVR
approach on sensor node SN2 is done with n = 600 data points used as training data.
Through validation data of size N = 4,096, the quality of the approximation is calculated
with R? = 0.87, which is used as the reference value for further investigations.

In the observation phase, observation data is continuously measured and compared
to virtual data. To show the influence of each fault on the comparison, the different fault
types (bias, drift, gain, precision degradation, and complete failure) are simulated, i.e.
injected into sensor node SN2, by changing the observation data (size N = 4,096). The
values for the faults and the results of the comparisons are presented in Table I. Therein,
the faulty data is characterized by a function f* defined by the faults compromising f.
With a small deviation from the references value (0.84 < R? < 0.87), a fault is sus-
pected; with higher deviations (R? < (0.84), a fault is considered “detected”. The results



indicate that the FD-SVR approach is capable of detecting even small sensor faults of all
fault types considered in this study, and, as expected, larger faults are easier detectable.

SUMMARY AND CONCLUSIONS

In wireless SHM systems, embedded fault diagnosis is becoming increasingly im-
portant due to the decentralized nature of the systems. Therefore, in this paper a decen-
tralized approach for embedded fault diagnosis based on FD-SVR has been presented.
The decentralized FD-SVR approach enables wireless sensor nodes autonomously self-
detecting sensor faults using the inherently redundant information in wireless SHM
systems. The ability of the approach to detect different fault types has been shown
by performing a validation test on a laboratory bridge structure. The test results have
demonstrated that the FD-SVR approach enables accurate fault detection and isolation,
ensuring reliable operation of sensors in wireless SHM systems even in case of relatively
small sets of sensor data. Future research may focus on the extension of the approach to
the other stages of fault diagnosis, i.e. fault identification and fault accommodation.
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TABLE 1. FAULT DETECTION RESULTS.

Fault type Fault parameter Comparison result  Fault detection
Non-faulty £ (t) - R? =0.87 Reference value
Bias b=0.02¢g R? =0.85 Fault suspected
f*t)=f(t)+b b=0.05g R%?=10.81 Fault detected
b=0.1g R? =0.68 Fault detected
Drift b=02-10"*g/s R?>=10.82 Fault detected
f*t)=ft)+b-t b=0.5-10"%g/s R?=0.64 Fault detected
b=1-10"%g/s R?>=0.14 Fault detected
Gain b=1.02 R? =0.86 Fault suspected
) =0b-f(t) b=1.05 R%?=0.82 Fault detected
b=1.1 R?=10.72 Fault detected
Precision degradation c?=0.02¢g R? =0.86 Fault suspected
f*t) = f(t) +w(t), 0?2 =0.05g R%?=10.84 Fault detected
w(t) ~ N(0,0?) 02=01g R? =0.75 Fault detected
Complete failure
f*(t)=0b, b=0g R? = —inf Fault detected
f*(t) =w(t) ~N(0,0?) o2=01g¢g R? = —0.61 Fault detected

Sampling frequency 128 Hz; range of the parameters: ¢ € [0,32s], 2 € [-1.3,1.3] g
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